

Updated: 6 Jan 2026

Quickstart instructions for launching a DCP Linux Worker in the Global Network or in

Private Compute Groups. Earned Compute Credits are deposited directly into your DCP

bank account, which can be created in the DCP Portal at https://dcp.cloud

Linux / Unix Worker Overview

Supported Platforms
Ubuntu Linux 20.04, 22.04, 24.04, 25.04, 25.10 (64-bit; x86-64, arm64)

Deployment Model
The Linux / Unix Worker is distributed as a .deb package or via Distributive’s official APT
repository, providing straightforward installation and update management. It can be deployed on
individual machines or scaled across institutional fleets using standard automation and
configuration management tools (shell scripts, Ansible, Puppet, etc.).

Execution Model
On Linux and Unix systems, the Standalone Worker runs continuously as a system-managed
service under an unprivileged system user (typically dcp). The dcp-worker package installs a
dedicated user and a systemd service (dcp-worker.service) responsible for lifecycle
management. The Worker is never executed with root privileges during normal operation.

systemd handles:

●​ Starting the Worker at boot
●​ Restarting the Worker on failure
●​ Capturing stdout/stderr logs
●​ Enforcing basic process isolation and resource accounting

Linux Worker Quickstart (APT)

Update the system:

bash

sudo apt update && sudo apt upgrade -y

Install dcp-worker

bash

wget -qO- https://apt.distributive.network/apt-setup.sh | bash
sudo apt-get install -y dcp-worker

After installation, the dcp-worker systemd service starts automatically and begins executing Jobs
immediately.

To stop all DCP services:

bash

sudo systemctl stop dcp-worker

Monitoring a Running Worker

Option A: Foreground Mode (Text UI)
Stop the background service if it is running:

bash

sudo systemctl stop dcp-worker

Run the Worker manually as the unprivileged dcp user:

bash

sudo --user=dcp /opt/dcp/bin/dcp-worker.sh

Press Esc twice to exit.

Example with custom options:

bash

sudo --user=dcp /opt/dcp/bin/dcp-worker.sh \
 --dcp-identity=<id-private-key> \
 --earnings-account=<bank-account> \
 --no-global \
 --join <key>,<secret> \
 --utilization=1,1 \
 --cores=4,1

Option B: Background Mode (systemd)
Start the Worker:

bash

sudo systemctl start dcp-worker

View logs from the last 5 minutes:

bash

sudo journalctl -f --since="5 minutes ago" -u dcp-worker

Press Ctrl+C to exit log monitoring.

Configuring the Worker Service
Edit the systemd service file:

bash

sudo vim /etc/systemd/system/dcp-worker.service

Modify the ExecStart line to include desired parameters:

ini

ExecStart=/opt/dcp/bin/dcp-worker.sh --output=console --dcp-identity=<id-private-key>
--earnings-account=<bankAccount> --no-global --join <key>,<secret>

Apply changes (Esc then :wq then Enter) and restart the Worker:

bash

sudo systemctl daemon-reload && sudo systemctl restart dcp-worker

Updating the Worker
Check for available updates:

bash

apt list --upgradable | grep dcp-worker

Upgrade dcp-worker:

bash

sudo apt update
sudo apt-get install --only-upgrade dcp-worker

Restart the Worker after updating:

bash

sudo systemctl restart dcp-worker

Verify the installed version:

bash

dcp-worker --version

There are several additional options, such as specifying allowed origins for routing data,
functions, and results directly behind the firewall (e.g., for hospital genomics data processing), or
setting target CPU and GPU loads to throttle device consumption, etc. Use --help to see the full
list of options.

Process and Privilege Model
All evaluator processes run as child processes of the unprivileged dcp-worker service and inherit
no elevated privileges or Linux capabilities. Evaluators communicate only with the Worker service
over loopback TCP. No evaluator process accepts inbound network connections, accesses the
host filesystem, or executes with administrative privileges. The runtime process hierarchy on
Linux is:

systemd
 └── dcp-worker (Node.js, unprivileged user)
 └── dcp-evaluator (one per CPU core and GPU)

Resource Scheduling and Isolation
Process scheduling and resource allocation are entirely delegated to the host operating system.
By default, the Worker will make all detected CPU cores and GPUs available for computation.
Administrators may restrict resource usage via:

●​ Command-line flags (-c cpuCount,gpuCount)
●​ systemd service configuration (e.g., CPU quotas, cgroups)
●​ Standard OS-level scheduling and policy controls

Operational Characteristics
Linux / Unix Standalone Workers are typically used for:

●​ Institutional or enterprise deployments on desktops or servers
●​ Continuous background execution for CPU- and GPU-based distributed computation
●​ Scavenging idle compute cycles in multi-tenant environments

They preserve the same core sandboxing and security properties as other DCP Worker variants,
while leveraging the host OS’s service management and privilege model (systemd, unprivileged
users) to manage lifecycle, isolation, and resource allocation.

Happy computing

	
	
	
	Linux / Unix Worker Overview
	Supported Platforms
	Deployment Model
	Execution Model

	Linux Worker Quickstart (APT)
	Monitoring a Running Worker
	Option A: Foreground Mode (Text UI)
	Option B: Background Mode (systemd)

	Configuring the Worker Service
	Updating the Worker
	Process and Privilege Model
	Resource Scheduling and Isolation
	Operational Characteristics

