

Updated: 6 Jan 2026

Quickstart instructions for launching a DCP Docker Worker in the Global Network or in

Private Compute Groups. Earned Compute Credits are deposited directly into your DCP

bank account, which can be created in the DCP Portal at https://dcp.cloud

Docker Worker Overview

Supported Platforms
Docker-compatible hosts, including Docker Desktop on macOS and Windows (64-bit; x86-64,
arm64)

Deployment Model
The Docker Worker is distributed as a pre-built container image
(distributivenetwork/dcp-worker) and can be deployed on individual hosts using Docker or at
scale using container orchestration platforms such as Kubernetes or OpenShift. For orchestrated
deployments, Workers are typically launched via declarative configuration (e.g., YAML manifests
or generated deployment templates) and managed using standard container lifecycle and
scheduling mechanisms. A YAML manifest generator is available to simplify creating deployment
templates for large-scale or private compute group deployments.

Execution Model
The Docker Worker executes inside a Linux container managed by the host’s container runtime.
The container packages the same dcp-worker and sandboxed evaluator binaries used by
Standalone Workers, providing a consistent and reproducible runtime environment across hosts.

Docker provides packaging, dependency isolation, and deployment portability. It does not alter
the DCP Worker execution or sandbox security model; it adds an additional isolation boundary
enforced by the container runtime.

Docker Worker Quickstart

Pull the latest DCP Docker Worker image from Docker Hub:

bash

docker pull distributivenetwork/dcp-worker:latest

To view all supported command-line options and defaults, run the Worker with --help

bash

docker run distributivenetwork/dcp-worker:latest -–help

Run in the Global Compute Group (Foreground, TUI)
Run the Worker in the Global Compute Group and deposit earned Compute Credits into your
DCP bank account (replace the account below with your own from dcp.cloud):

bash

docker run -it distributivenetwork/dcp-worker:latest \
 --earnings-account=0x6aea918f84eaad8831599d3e3269d15ff81fb64c

Press <Esc> twice to exit the Worker

Run in Private Compute Groups (Foreground, TUI)
Run the Worker without joining the Global Compute Group and instead join one or more Private Compute
Groups using a join key and secret:

bash

docker run -it distributivenetwork/dcp-worker:latest \
 --earnings-account=0x6aea918f84eaad8831599d3e3269d15ff81fb64c \
 --no-global \
 --join demo,dcp

https://dcp.cloud

Replace demo,dcp with the appropriate group name and secret for your deployment.

Run with a Persistent DCP Identity
To register the Worker in the DCP Portal and manage it under your account, provide a DCP
identity keystore. Assuming ~/.dcp/id.keystore exists on the host:

bash

docker run -it \
 -v $HOME/.dcp/id.keystore:/id.keystore:ro \
 distributivenetwork/dcp-worker:latest \
 --dcp-identity=/id.keystore \
 --earnings-account=0x6aea918f84eaad8831599d3e3269d15ff81fb64c \
 --no-global \
 --join demo,dcp

The keystore is mounted read-only and used only for Worker identity and authentication.

There are many additional options, such as specifying allowed origins for routing data, functions,
and results directly behind the firewall (e.g., for hospital genomics data processing), or setting
target CPU and GPU loads to throttle device consumption, etc. Use --help to see the full list of
options.

Process and Isolation Model
All evaluator processes run inside the container under an unprivileged user and inherit no
elevated privileges. Evaluators communicate exclusively with the Worker over container-local
networking (loopback).

All sandbox security guarantees described in the Core DCP Worker Security Model apply
unchanged. Docker adds an additional isolation boundary enforced by the container runtime
(Linux namespaces and cgroups) but does not modify the Worker’s execution or sandbox security
model. Filesystem access is limited to explicitly mounted volumes, if any, and evaluator
sandboxes operate entirely within the container boundary.

Resource Scheduling
CPU, memory, and GPU resource allocation are governed by the container runtime and host
operating system.

●​ CPU and memory limits may be enforced via container runtime configuration.

●​ GPU access is mediated through the host’s GPU drivers and container runtime (e.g.,
NVIDIA Container Toolkit).

●​ The DCP Worker does not install kernel modules or modify host system configuration.

By default, the Worker will make all container-visible CPU cores and GPUs available for
computation unless constrained by runtime configuration or Worker flags.

Operational Characteristics
Docker Workers are typically used for:

●​ Cloud and data-center deployments
●​ Ephemeral or auto-scaled compute pools
●​ Environments favoring immutable infrastructure and declarative orchestration

They preserve the same core sandboxing and security properties as other DCP Worker variants,
with containerization providing standardized packaging and deployment rather than altering the
execution or security model.

Happy computing

	
	
	
	Docker Worker Overview
	Supported Platforms
	Deployment Model
	Execution Model

	Docker Worker Quickstart
	Run in the Global Compute Group (Foreground, TUI)
	Run in Private Compute Groups (Foreground, TUI)
	Run with a Persistent DCP Identity
	Process and Isolation Model
	Resource Scheduling
	Operational Characteristics

